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Thermoelectric generators

https://en.wikipedia.org/wiki/Thermoelectric_generator, downloaded on 9th March 2017.

Figure of merit

https://rps.nasa.gov/resources/56/enhanced-multi-mission-radioisotope-thermoelectric-generator-emmrtg-concept/
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Thermoelectric power generation

Efficiency Figure of merit
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Hot Side Temperature (K)

Tcold = 373 K

ZTave = 1

ZTave = 2

ZTave = 0.5

ZTave = 4

S = Seebeck coefficient 
(thermopower)

ρ = Electrical resistivity 

κ = Thermal conductivity 

T = Absolute temperature 

Power generation
(across 1275 to 300 K)

State-Of-Practice materials: 
ZTaverage ~ 0.5

State-Of-the-Art materials: 
ZTaverage ~ 1.1

Best SOA materials: 
ZTpeak ~ 1.5 to 2.0



Composite material = a material made from two or more
constituents with different physical or chemical properties that,
when combined, produce a material with characteristics different
from the individual components. The individual components
remain separate and distinct within the finished structure.

Composite

A

B



Thermoelectric composite

Organic-inorganic composites are common practice.

What about inorganic-inorganic composites?

Polymer 108 (2017) 513-520.

Liu et al., APL Mater. 4 (2016) 104813.

Bergman, Levi, J. Appt. Phys., Vol. 70 (1991) No. 11.

Bergman, Fel, J. Appt. Phys., Vol. 85 (1999) No. 12.



Thermoelectric composite

Liu et al., APL Mater. 4 (2016) 104813.

Recent studies showed it is possible to improve zT

Liu et al., APL Mater. 4 (2016) 104813.

Ibañez et al., Nature Communications 7 (2016) 10766.

PbS+Cu

PbS+Ag



Yb14MnSb11

• Yb14MnSb11

- Zintl Structures
- Covalent, anionic substructures: [MPn4]9-, [Pn3]7-, 

4Pn3-, 14A2+

- Body centered tetragonal (I41/acd)
- 208 atoms per unit cell
- P-type conductor

• Low thermal conductivity (~0.85 Wm-1K-1)

• Peak zT ~1.3 @1273K

• 3x improvement over SiGe

Journal of Solid State Chemistry, 271 (2019) 88–102

Material Science and Engineering R (2018). DOI:10.1016/j.mser.2018.09.001



Composite metal (M) choice

Yb14MnSb11 + M

- Ni reacted with matrix forming secondary phases à not good.

- We used Co à

- We used W à Journal of Applied Physics (DOI: 10.1063/1.5118227)

Inclusions M-Sb
Reactivity 

ρ
[nΩ·m] @25°C E [GPa] CTE 

[um/mK] @25°C

Ni High 69.3 200 13.4

Co Low 62.4 209 13

W None 52.8 411 4.5

Cobalt Composite Network Using Thermoelectrics
(CoCoNUT)



Yb14MnSb11 + M synthesis

High energy ball mill
Mix precursors
(Yb, MnSb, Sb + 

CoSb/W)

Homogenized 
powder

SPS 
Synthesis/compaction

½” pellets
>98% density

Yb14MnSb11 +2vol%Co +5vol%Co +10vol%Co



• Profile of each sample matches with Yb14MnSb11.

• Sample with 10%Co shows CoSb Impurities. 

• W reflections are visible in 2vo%, 5vol% W samples.

• W composite samples show no impurities.

XRD analysis



Microstructure
2%Co 5%Co 10%Co

• Inclusions sizes between nm and several μm (for both Co & W).
• Signs of CoSb in 10%Co sample (not dissolved CoSb).
• No cracks radiating from inclusions (CTE mismatch).

5%W2%W



• More M à more conductive à ρ decreases (as expected).
• Similar trend for both TM.
• Effects of inclusions is more evident in 14-1-11 than in LaTe

(15vol% is needed).

Electronic transport



• More Co à more conductive à ρ decreases 
(as expected).

• Clear ferromagnetic behavior of μ and n.
• Ferromagnetic-paramagnetic transition 

behavior at 1200-1250 K.
• Interesting fact: F-P transition 150-200 K 

before Curie temperature (~1400K). 

Electronic transport



Electronic properties

• Mobility does not change much, comparable with pristine 14-1-11.

• There’s an increase of n, although data for 2vol% are noisy.



• Lower electrical resistivity should be paired with lower Seebeck coefficient.
• However, S remains similar to pristine Yb14MnSb11.
• Only sample with 10%Co experiences decrease in Seebeck coefficient.

Electronic transport



• Cp corrected to include inclusion contribution.

• Up to 5% Co inclusions, thermal conductivity is comparable to pristine 
Yb14MnSb11.

• In W samples 5% already have higher 𝜿.

Thermal properties



Thermoelectric performance

zT≈ 1.7

zT≈ 1.25

• Increase PF canceled out from increase κ.
• In the end zT does not vary.

• Increase PF 
• κ comparable up to 5% Co.
• In the end zT improves from 1.25 to 1.7.

zT≈ 1.25



100g 500g 1Kg

14-1-11

2vol% W

5vol% W



Vickers Hardness

- At low loads (up to 300gf) the HV values are comparable for all samples.

- The last two loads (0.5 and 1 Kgf) the sample with 5 vol%W shows higher HV.
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QUESTIONS??


